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The oscillation of an infinite plate in a strong rarefied gas under 
constant force 
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Department of Mathematics, Assiut University, Egypt 
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Abstract. The oscillation of an infinite plate in strong rarefied gas under constant force is 
investigated in the framework of the kinetic theory of gases. A model kinetic equation 
is solved using the method of moments, this method with two sided distribution function 
is used to replace a model equation describing the Row of the gas with non-linear 
moments equations. 

The moments method, Laplace’s transform and the small parameter method are used to 
solve this problem. 

1. Introduction 

The investigation of the behaviour of a rarefied gas near moving bodies is an aerody- 
namic problem of great interest. I t  is important to determine the rule governing the 
motion due to collision of the molecules with solid surfaces and collisions between the 
molecules themselves. Because of rarefaction of the gas there must be discontinuities in 
macroscopic parameters at the surfaces. In the last few years many authors, such as 
Grad (1949) and Weitzer (1965) have solved the problem of a half-space of gas 
bounded by a wall oscillating with small amplitude at a fixed frequency. Our aim in this 
paper is mainly to determine the velocity and shear stress of the plate, it is clear from the 
results that the solution is periodic. The distribution function is assumed to satisfy the 
Boltzmann equation, also we assume that the molecules are reflected from the surface 
diffusely with complete energy accomodation. The collision term is simplified by using 
the model suggested by Bhatnagar et af (1954). 

2. Basic equations 

Consider that the upper half of the space, which is bounded by an infinite plate y = 0, is 
filled with a highly rarefied gas. The plate is considered fixed and suddenly begins to 
oscillate itself in its own plane with velocity equal to U sin w c  (U, w are constants). The 
plate is assumed impermeable and uncharged. The particles are moving under a 
constant field of forces (0, ezEo, 0) where Eo is an external electric field and ez is the 
charge of each particle. 

Assuming the gas to be highly rarefied, the induced electric field may be ignored. 
The distribution function F(t ,  y ,  E )  of the particles may be obtained from the kinetic 
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equation: 

aF aF e z E o  aF - + c y - + - - -  - 0. 
at a y  m ac, 

To solve (2.1), we shall use the solution in the form: 

~ ~ = n ~ ( 2 . r r ~ ~ ~ ) - ~ ’ ~  e x p ~ - ~ c x - v x l ~ 2 + ( c 1 - v y l ~ 2 + c ~ ] / ~ ~ ~ 1  c y < o  
F = {  F2 = n2(2.rrRT2)-3/2 exp[-(cx - U , , ) ~ + ( C ~  - v ,2 )2+~f] /2RTz  c ,>o  (2 .2)  

where n l ,  n2, T1 ,  T2, U,., vx2, vyl ,  and vy2  are unknown functions of two variables y and t. 
Multiplying equation (2.1) by 4i (c)  and integrating over all values of 5 we get: 

One can evaluate all mean quantities g by averaging over the velocity space: 

We introduce dimensionless variables by substitutions: 

n, = tiinm, T, = T,Tx, v x ,  = &,U, 

v y ,  = uY,U, w ( i  = 1 , 2 )  y = y U / w ,  

If we take M2<< 1 we can assume that the density and temperature variations at each 
point of the flow at any time are negligible, i.e. f i i  = 1 + O(M2) ,  Ti = 1 + O ( M 2 )  and 

Using the dimensionless variables and dropping terms of order O(M2) ,  we obtain 

t = i / w .  

u,, = O(M2). 

from (2 .3)  for q51 = cx and  4 2  = cxcy 

a a 
- ( ~ x 1 + U x 2 ) + ~ 1  - ( ~ x 2 - U x 1 ) = O  
at a y  

a a 
-(fJxz-vx1)+a2 - ~ ~ x l + ~ x * ~ - Y 1 ~ ~ x * + ~ X 2 ~ = ~ .  
a t  ay 

(2 .5)  

For simplicity of notation, we have dropped the ‘bars’ over the dimensionless 
variables. Also 

1 
M 

a l  =- ( 2 / T K ) 1 / 2 ,  1 / 2  1 
M 

a z = - ( n - / 2 K )  , 

ezEo 
mw 

y1 =- ( ~ R T / T ) ” ~ ,  hf = U/(KRTm)1’2 

and K = c,/c,, is the ratio of specific heats. 
The initial and boundary conditions are: 

% ( Y ,  0) = U X , ( Y ,  0) = 0, 

v,,(O, t )  = sin t 

vx l  and vxz are bounded at y = CO. 
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Let X = U,, + uXZ,  Y = vXz - U,, then equation ( 2 . 5 )  takes the form: 

ax ay 
-+al -=0 
at a y  

ay ax 
-+a2 -- y l X  = 0. 
a y  8Y 

The initial and boundary conditions (2.7) and (2.8) become: 

X ( Y ,  0 )  = Y(Y, 0) = 0 

~ [ x ( o ,  t ) +  Y ( O ,  t ) ]  =sin t 

X ,  Y are bounded at y = C O .  

3. Solution of the governing equations 

3.1. In the absence of an electric field 

In this case equations (2.10) take the form 

ax ay 
-+al -=0  
at a v  

aY ax 
a t  a y  
-+ a z  - = 0. 

(2.10) 

(2.1 1 )  

(2.12) 

(3 .1)  

This is a linear system of homogeneous partial differential equations with constant 
coefficients. By using Laplace transforms, and making the necessary algebraic manipu- 
lations, the solution of (3.1) may be written in the form El Safty (1977): 

,- 

3.2. Using the small parameter method 

Using the small parameter method and considering the electric field a small parameter, 
the solution can be put as: 

By neglecting all terms of order O ( y : )  we get X ( l ) ,  Y"),  X'2 ' ,  and Y(2)  in the form 
El Safty (1977): 
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l o  
3.3. The solution when a fraction of molecules is reflecting specularly 

Consider the case when a fraction 8 (called the reflection coefficient) of the molecules is 
reflecting diffusely and the remaining fraction (1 - 8) is reflecting specularly. 

In  this case the first boundary condition (2.8) takes the form: 

v,,(O, t ) =  (I - 8)~,,(0,  t ) +  8 COS t. (3.7) 

By the same technique used above, we obtain in the absence of a magnetic field (Lees 
1965): 

sin([ - y/ Jalaz) WlJalaz 28 
i- 

1- (3.8) 
t s y/v'ala2 

io 

3.4. Solution of the problem for any  y1 

In this section we solve equation (2.10) with the initial and boundary conditions (2.11) 
and (2.12) for any yl. 

By the same method used before (El Safty 1977) we can get the solution for X and Y 
in the form: 

A sin(? - N y / a 2  + €1)  t > Ny/a2 

0 t s N y / a 2  
(3.12) 
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B1 sin(t - Ny/az - €2)  t > Ny/az 

0 t 6 Ny/a2 
Y = {  

2479 

(3.13) 

where 

A i =  exp(y1y'2az) [y:(L - N)2+4((y:/4)+ LN)z]'/2 
L2 + y:/4 

c l  = tan-'[yl(L - N)/2((y:/4)+ LN)]. 

Also the solution when a fraction of molecules is reflecting specularly takes the 
form: 

A Z  sin(r - Ny/az + A I )  

0 

X 
10 (01 

-0L {  

-081 

-061 1 

-1 01 

0 8! 

-081 
-1 01 -J 

(3.14) 

I61 j 
I 
1 

! 

Figure 1. The relation between velocity (X) and time ( t )  for different distances ( y )  from the 
plate. M = 0.1, y1 = 1. ( a )  Reflection coefficient B = 0.4, ( b )  B = 0.6, ( c )  B = 0.8, ( d )  0 = 1. 
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-08 

-1 0 

(3.15) 

where 

A2= exp(y'y/2a2) [ y : ( L ' -  N)'+4(y;/4+ L'N)]'/2, 
LIZ + y;/4 

4. Discussion and conclusions 

Numerical computations have been done to examine the behaviour of the velocity and 
shear stress. 

The results are given in the following figures. (i) Figure 1 gives the relation between 
the velocity (X) when 8 = 0.4, 0.6, 0-8,  1; y1 = 1; M = 0.1 and time (t) for different 
values of y ( y  = 0, 5 ,  10). 

Figure 2. The relation between velocity (X) and time ( t )  for different reflection coefficients 
at t h e p l a t e ( y = O ) . M = O . l ,  y l = l .  
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I t  is clear that: ( a )  for constant 8 the velocity amplitude increases with y ;  (6) for 
constant y the velocity amplitude increases with 8 ;  ( c )  there exists a phase angle 
velocity with the velocity of the plate which depends on y ,  8, y1 and M. (ii) Figure 2 gives 
the velocity (X)  at y = 0 and time ( t )  for different 8 (8 = 0.4, 0.6, 0.8, 1). The slip 
velocity (X = X(0)-sin t )  is a periodic function whose amplitude is an increasing 
function of 8. 

(iii) Figure 3 gives the relation between the shear stress ( Y )  for 8 = 0*4,0*6,0.8,  1 ; 
y1 = 1; M = 0.1 and time ( t )  for different values of y ( y  = 0, 5 ,  10). These figures show 
that: ( a )  the amplitude of the shear stress is independent of time t, an increasing 
function of y and a decreasing function of 8; ( b )  the phase angle of the shear stress is also 
a function of y ,  8, y1 and M. 

(iv) In figure 4 the shear-stress jump at the surface of the plate is a periodic function 
in time and its amplitude decreases slowly with large variations of 8. 

(v) The amplitudes of the velocity and shear stress increase with the increase of y l .  
(vi) The periodic solution takes place only for values of / y l ~  5 6. 

/ c i  1 
I 
1 

21 t 

I 
I 

Figure 3. The relation between shear stress (Y) and time ( I )  for different distances from the 
plate for several reflection coefficients. M = 0.1, y = 1, ( a )  6 = 0.4, ( b )  6 = 0.6, ( c )  6 = 0.8, 
( d )  e = 1. 
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Y 

o a  

Figure 4. The relation between shear stress ( Y )  and time ( 1 )  for different reflection 
coefficients at the plate ( y  = 0). M = 0.1, y1 = 1. 
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